Modern Numerical Nonlinear Optimization by Andrei, Neculai

Modern Numerical Nonlinear Optimization

Regular price$169.99
/
Shipping calculated at checkout.

Format

This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications.

The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.



Author: Neculai Andrei
Publisher: Springer
Published: 10/19/2022
Pages: 807
Binding Type: Hardcover
Weight: 3.67lbs
Size: 10.00h x 7.00w x 1.75d
ISBN: 9783031087196

About the Author
Neculai Andrei holds a position at the Center for Advanced Modeling and Optimization at the Academy of Romanian Scientists in Bucharest, Romania. Dr. Andrei's areas of interest include mathematical modeling, linear programming, nonlinear optimization, high performance computing, and numerical methods in mathematical programming. In addition to this present volume, Neculai Andrei has published several books with Springer including A Derivative-free Two Level Random Search Method for Unconstrained Optimization (2021), Nonlinear Conjugate Gradient Methods for Unconstrained Optimization (2020), Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology (2017), and Nonlinear Optimization Applications Using the GAMS Technology (2013).

We offer worldwide shipping.

All baymarbookgroup.ca orders over $100
(before taxes) are eligible for FREE standard shipping within Canada and
the United States.

Estimated Delivery Times Outside the USA

Area / Country Standard International Shipping
(Not Trackable)
International Courier Trackable 
Asia 10-14 days 4-6 days
Australia 18-20 days 4-6 days
Canada 10-14 days 4-6 days
Caribbean 14-18 days 4-6 days
Europe 10-14 days 4-6 days
India 16-20 days 4-6 days
Latin America 10-14 days 4-6 days
Middle East 16-20 days 4-6 days

You may also like


Recently viewed